A Biologically Inspired Spiking Neural Network for Sound Localisation by the Inferior Colliculus

نویسندگان

  • Jindong Liu
  • Harry R. Erwin
  • Stefan Wermter
  • Mahmoud Elsaid
چکیده

We introduce a biologically inspired azimuthal sound localisation system, which simulates the functional organisation of the human auditory midbrain up to the inferior colliculus (IC). Supported by recent neurophysiological studies on the role of the IC and superior olivary complex (SOC) in sound processing, our system models two ascending pathways of the auditory midbrain: the ITD (Interaural Time Difference) pathway and ILD (Interaural Level Difference) pathway. In our approach to modelling the ITD pathway, we take into account Yin’s finding that only a single delay line exists in the ITD processing from cochlea to SOC for the ipsilateral ear while multiple delay lines exists for the contralateral ear. The ILD pathway is modelled without varied delay lines because of neurophysiological evidence that indicates the delays along that pathway are minimal and constant. Level-locking auditory neurons are introduced for the ILD pathway network to encode sound amplitude into spike sequence, that are similar to the phase-locking auditory neurons which encode time information to the ITD pathway. A leaky integrate-and-fire spiking neural model is adapted to simulate the neurons in the SOC that process ITD and ILD. Experimental results show that our model performs sound localisation that approaches biological performance. Our approach brings not only new insight into the brain mechanism of the auditory system, but also demonstrates a practical application of sound localisation for mobile robots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A biologically inspired spiking neural network model of the auditory midbrain for sound source localisation

This paper proposes a spiking neural network (SNN) of the mammalian subcortical auditory pathway to achieve binaural sound source localisation. The network is inspired by neurophysiological studies on the organisation of binaural processing in the medial superior olive (MSO), lateral superior olive (LSO) and the inferior colliculus (IC) to achieve a sharp azimuthal localisation of a sound sourc...

متن کامل

Multiple Sound Source Localisation in Reverberant Environments Inspired by the Auditory Midbrain

This paper proposes a spiking neural network (SNN) of the mammalian auditory midbrain to achieve binaural multiple sound source localisation. The network is inspired by neurophysiological studies on the organisation of binaural processing in the medial superior olive (MSO), lateral superior olive (LSO) and the inferior colliculus (IC) to achieve a sharp azimuthal localisation of sound sources o...

متن کامل

Biomimetic Binaural Sound Source Localisation with Ego-Noise Cancellation

This paper presents a spiking neural network (SNN) for binaural sound source localisation (SSL). The cues used for SSL were the interaural time (ITD) and level (ILD) differences. ITDs and ILDs were extracted with models of the medial superior olive (MSO) and the lateral superior olive (LSO). The MSO and LSO outputs were integrated in a model of the inferior colliculus (IC). The connection weigh...

متن کامل

Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus.

Duration is a biologically important feature of sound. Some neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus, are tuned to sound duration, but it is unclear at what level the tuning originates or what neural mechanisms are responsible for it. The application of antagonists of the inhibitory neurotransmitters gamma-aminobutyric acid or glycine to neurons in the inferior ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008